Hausdorff dimension in a family of self-similar groups

نویسنده

  • Zoran Šunić
چکیده

For each prime p and a monic polynomial f , invertible over p, we define a group Gp,f of p-adic automorphisms of the p-ary rooted tree. The groups are modeled after the first Grigorchuk group, which in this setting is the group G2,x2+x+1. We show that the constructed groups are self-similar, regular branch groups. This enables us to calculate the Hausdorff dimension of their closures, providing concrete examples (not using random methods) of topologically finitely generated closed subgroups of the group of p-adic automorphisms with Hausdorff dimension arbitrarily close to 1. We provide a characterization of finitely constrained groups in terms of the branching property, and as a corollary conclude that all defined groups are finitely constrained. In addition, we show that all infinite, finitely constrained groups of p-adic automorphisms have positive and rational Hausdorff dimension and we provide a general formula for Hausdorff dimension of finitely constrained groups. Further “finiteness” properties are also discussed (amenability, torsion and intermediate growth).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuity of the Hausdorff Dimension for Sub - Self - Conformal Sets ( Communicated

Self-similar sets and self-conformal sets have been studied extensively. Recently, Falconer introduced sub-self-similar sets for a generalization of self-similar sets, and obtained the Hausdorff dimension and Box dimension for these sets if the open set condition (OSC) is satisfied. Chen and Xiong proved the continuity of the Hausdorff dimension for sub-self-similar sets under the assumption th...

متن کامل

A Dimensional Result for Random Self-similar Sets

A very important property of a deterministic self-similar set is that its Hausdorff dimension and upper box-counting dimension coincide. This paper considers the random case. We show that for a random self-similar set, its Hausdorff dimension and upper box-counting dimension are equal a.s.

متن کامل

Bilipschitz Embedding of Self-similar Sets

This paper proves that the self-similar set satisfying the strong separation condition can be bilipschitz embedded into self-similar set with larger Hausdorff dimension, and it can be embedded into a self-similar set with the same Hausdorff dimension if and only if these two self-similar sets are bilipschitz equivalent.

متن کامل

Fractal trees for irreducible automorphisms of free groups

The self-similar structure of the attracting subshift of a primitive substitution is carried over to the limit set of the repelling tree in the boundary of Outer Space of the corresponding irreducible outer automorphism of a free group. Thus, this repelling tree is self-similar (in the sense of graph directed constructions). Its Hausdorff dimension is computed. This reveals the fractal nature o...

متن کامل

Hausdorff Dimension and Its Applications

The theory of Hausdorff dimension provides a general notion of the size of a set in a metric space. We define Hausdorff measure and dimension, enumerate some techniques for computing Hausdorff dimension, and provide applications to self-similar sets and Brownian motion. Our approach follows that of Stein [4] and Peres [3].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006